
Compile Fast

Run Faster

Scale Forever

A Look into the sol Lua Binding Library

ThePhD

May 10th, 2018

Why “ThePhD”?

 It’s a std::promise<> for my std::future<>

 Finishing undergrad in about a year

 Debating industry vs. graduate school

 Actually stands for “The Phantom Derpstorm”

 ’cause bad at video games 😅

Lua

 Small scripting language used in tons of places

 Databases (e.g. Redis)

 Operating System components

 Tons of game projects/engines that are not Unreal

 High Performance Computing projects

 GUI Scripting (Waze/OpenMPT)

 Chat servers, Server management

 And so on and so forth…

sol2

 Lua <-> C++ interop library

 Started by Danny “Rapptz” Y. (M.D.) as just sol

 C++14 and better

 sol3: Making a break for C++17/20 soon

 Written on top of Lua C API

 Provides C API compatibility layers

Established

 sol is Mature, used in many industries and projects

 Has competed against all other libraries (20+) and more or less survived + thrived

 Except in the case of compilation speed

The Interface

What exactly would make a good interface for Lua in C++?

Language Parity

 Lua has….

 Tables (serves as arrays, maps, class-proxies, …)

 Numbers (always doubles until Lua 5.3, which introduced integers up to 64 bits signed)

 Functions (as first class citizens, closures are easy)

 Strings (Lua literals are encoded as utf8 by default)

Let me show you…

What would C++ look like…?

double timing = lua[“timing”];
function func = lua[“func”];
bool result = func(1, 2);
std::tuple<int, int> result2 = lua[“callable”](4, 2); // multiple returns

lua[“signal”] = true;
lua[“signals”] = make_new_table();
lua[“signals”][1] = [](int v) { std::cout << “beep with” << v << ‘\n’; };

lua.script(“if signal then signals[1](20) else print(‘boop’)”);

“Pinching Point”

The stack abstraction and why it matters

Stacks!

 Lua’s C API is stack-based

 Annoying to manage, even when understood

 Defines all interop for types

 Primitives (numbers (integers), strings, tables, functions) to complex entities

 Custom types (userdata, lightuserdata)

Good to use for simple things…

 my_table[“a”]

 get ‘my_table’ global – lua_getglobal(L, “my_table”)

 get field – lua_getfield(L, -1, “a”) // negative numbers count from top of stack

 retrieve value: lua_to{x}(…) value (where x is number/userdata/string)

 my_func(2)

 push ‘my_func’ global function – lua_getglobal(L, “my_func”)

 push argument – lua_pushnumber(L, 2)

 call, get return(s) – lua_pcall(…), lua_to{x}(…), lua_pop(L, …)

(╯°□°）╯︵┻━┻ !!

 other_func(
my_table[“a”][“b”],
my_func(2)

)

 Lua’s C API does not scale with complexity

 amount of necessary boilerplate

 developer time

sol::stack

 Non-self-balancing, stack-changing API wrappers

 sol::stack::get<Type>(L, stack_index, record);

 int num_pushed = sol::stack::push(L, anything);

 sol::stack::check<Type>(L, stack_index, handler, record);

 sol::stack::check_get<Type>(L, stack_index, handler, record);

 int res = stack::lua_call<…>(L, from, cpp_callable, extra_arguments…);

 record tracks how many items are used / pulled from the stack

Fixed interop points

 Each struct is a template that has a sole responsibility, can override for custom behavior

 struct sol::stack::getter<T, C= void> (.get(…))

 struct sol::stack::pusher<T, C= void> (.push(…))

 struct sol::stack::checker<T, sol::type, C= void> (.check(…))

 struct sol::stack::check_getter<T, sol::type, C= void> (.check_get(…))

 sol::stack::lua_call<…>(…) uses other functions to perform the call

Scalability requires Defaults

 Problem: C++ has a lot more types than integers, floating point, strings, functions and

table-alikes

 Need a sane default for some user-defined type T

 Treated as userdata, which is a blob of memory

Some Types are Special

 std::pair / std::tuple

 Lua has multiple returns, allow multiple-returns from C++ with these

 std::vector/std::list/std::map/ … - Lua has tables which emulates these

 convert to table (expensive, but plays nice), or

 store C++ container userdata (direct, fast, but plays less nice with Lua ecosystem)

 std::wstring/std::u16string/std::u32string

 Unsurprisingly, people want these types to work – must UTF encode on push and on get.

What we are doing

 Uniform conversions to and from, based on type

 System is now well-defined for any given type, and easier to reason about

get
check(_get)

push
C++ Lua

sol::reference

The cornerstone abstraction

Rule of 0 for Lua Binding

 sol::reference is a reference-counting object for something that is taken from Lua

 Stored in the Lua registry, a heap of memory to keep Lua objects alive

 Slower than stack, faster than literally any other serialization scheme

 Basically a Lua-specific version of the upcoming std::retain_ptr<T, R>

 https://wg21.link/p0468r0

Formula for Success

 1 – Derive from sol::reference

 2 – Add no data members, just functionality and type-safety

 3 – ???

4 – Profit

 sol::object – generic object for doing .is<T>() checks and .as<T>() conversions

 sol::table – allows operator[] indexing

 sol::function – allows operator() for calling in C++

 sol::thread – encapsulates a Lua thread (not like a C++ thread; it’s separate stack space)

 sol::coroutine – like sol::function, but works off a stack space (thread)

 sol::state_view – cheap look at a Lua state, takes out a sol::table for registry and globals

 sol::state – sol::state_view + std::unique_ptr<lua_State*, lua_closer>

Magical Abstractions

Proxies, conversions and the missing Language Feature

Tables and []

 Need to be able to apply the access-operator [] on tables

 Optimizations to be applied for nested lookups – my_table[“bark”][“woof”]

 Table lookup and global lookup actually have different C calls for Lua’s C API

 Picking the right one / wrong one changes performances characteristics

 … But gives same results (“API Trap”)

operator[]

 Lazily concatenates / saves keys, generating a new proxy type

 1 tuple entry per operator [] lookup

 Commits lookup on any kind of assignment to proxy or implicit conversion of proxy

auto x = lua[“woof”][“bark”][1];

// decltype(x) == proxy<sol::global_table, const char*, const char*, int>

double value = x;

// triggers chained reads, attempts to conver to double

x = “woof”;

// triggers chained read into tables, then write into 1

proxy(_base) and friends

 Let’s take a peek…

What was all that SFINAE, exactly?

 Consider the simple case:

struct int_proxy {
operator int () { return 2; }

};

int_proxy ip{};
int value = ip; // nice, conversion
const char* value_2 = ip; // boom, no conversion

Scaling up -🦄 Proxy

struct unicorn_proxy {
template <typename T>
operator T () {

/* arbitrary code can go here */
return …;

}

};

unicorn_proxy up{};
int value = up; // nice, conversion
const char* value_2 = up; // yay!

Oh no! 🗡️🦄

struct unicorn_proxy {
template <typename T>
operator T () {

/* arbitrary code can go here */
return …;

}
};

unicorn_proxy up{};
int a, b;
std::tie(a, b) = up; // Kaboooooom!

Left Hand Side is Queen

 Implicit conversion operators take the type of the left hand side

 Exactly, with no modifications

 Cannot return a reference that is not fixed in memory

 ☠️ Cannot SFINAE/change return type! ☠️

 Type “T” is not a regular return type

 Cannot apply transformations not allowed by the language (only T& and T-style returns work)

Soon™ Paper: Extended Conversions

struct unicorn_proxy {
template <typename T>
int operator T () { // deduce from LHS…

return 42; // but return whatever you want
}

};

function_result

 Just another kind of proxy that has the same issues, manifests in other ways

Lua
function f (v)

return v, v * 2
end

C++

double a, b;
std::tie(a, b) = lua[“f”](2); // error: std::tuple<int&, int&> return
sol::tie(a, b) = lua[“f”](2); // ✔️: custom expansion and op=

Usertypes

A demo…

Overloading

Simple compile-time Overload Set reduction

Overloading

struct my_class {};
int bark (int arg);
int woof (std::string arg);
int bork (int arg1, bool arg2, double arg3, std::vector<double> arg4);
int borf (bool arg);
int yip (my_class& arg1, bool arg2);

// create overloaded set
lua[“f”] = sol::overload(bark, woof, bork, borf, yip);

 What kind of cost to select right overload if we do: f(my_class.new(), true) in Lua?

Simulate

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Arity != 1

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1>

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1>

Arity != 4

Simulate

bark woof bork borf yip

1 arg 1 arg 4 args 1 arg 2 args

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1, 4>

Arity == 2

Check types…

Simulate

bark woof bork borf yip ✔️

1 arg 1 arg 4 args 1 arg 2 args✔️

Lua calls:
f(my_class.new(), true)

must match:
my_class&, bool (arity of 2)

Disallowed: std::integer_sequence<1, 4>

Safety is Optional

But not std::optional

Queries can be made safe…

int value = lua[“value”];
my_class my_obj = lua[“my_obj”];

my_class& my_obj_r = lua[“my_obj”]; // can manipulate memory directly
my_class* my_obj_p = lua[“my_obj”]; // can manipulate memory directly

sol::function func = lua[“func”];
double x = f();

By slapping optional on it / checking

sol::optional<int> safe_value = lua[“value”];
sol::optional<my_class> safe_my_obj = lua[“my_obj”];

sol::optional<my_class&> safe_my_obj_r = lua[“my_obj”]; // nil = unengaged
sol::optional<my_class*> safe_my_obj_p = lua[“my_obj”]; // nil = engaged

sol::function func = lua[“func”];
if (!func.valid()) { throw std::runtime_error(“aaah”); }
sol::optional<double> x = f();

std::optional does NOT cut it

 For the reference case, would have to use some non_null<T*> struct and put that in

optional

 gsl::non_null is an alias, not a real struct – cannot control Proxy expressions based on it

 Overhead for the struct + boolean (optional<T&> is compact)

 Breaks library teaching:

 “If you want safety, just wrap X in an optional”, compared to

 “If you want safety, just wrap X in an optional, unless it’s a reference, then you need to use…”

Soon™ Paper: std::optional<T&>

 Rebind on assignment

 Only sane behavior

 Do not allow rvalues to be assigned into optional reference

 Prevents dangling lifetime issues

 Reduce internal boilerplate code

std::promise<sol>

What things are in the future for sol

Sol3: why?

https://github.com/ThePhD/sol2/issues/538

“I had spent a whole day for

moving my binding from tolua++

to sol2, I found my xcode

became very very lag and

compile time is about 10

minutes with about 8G heap,so I

have to abandon xcode for

coding.

I had spent another whole day

for moving my binding from sol2

to kaguya, compile time is

about 2-3 seconds.”

https://github.com/ThePhD/sol2/issues/538

Compile Times MATTER

 Variadic templates lose absolutely 0 information in propagation

 Can optimize the entire run time like crazy

 Overused, overzealous application: reduce with initializer_list and other techniques

 Saving compiler performance is a must

 Will lose users without it

if constexpr

 Probably the biggest thing that can be done

 There is a LOT of tag-dispatch and SFINAE that ultimate results in binary choices

 Things with fallbacks are the perfect candidate

Bloatymcbloatface

 People have used this tool on executable which utilize sol2 and other analysis techniques

on debug/release binaries

 The amount of symbols / spam is E N O R M O U S

But the goal was runtime speed, right…?

 Right:

http://sol2.readthedocs.io/en/latest/benchmarks.html

http://sol2.readthedocs.io/en/latest/benchmarks.html

The Last and Most Important Thing

Super important, I swear

DOCUMENTATION!!!

https://github.com/ThePhD/sol2/issues/36

“Greetings. I used to use Sol but

could not figure out how it works

… and thus quickly switched

over to Selene, since on its main

page it had a much better

tutorial/how-to-manual.

However now I'm currently using

Selene and thinking about

switching to Sol2 (because it

supports LuaJit, being able to

switch between luajit and lua5.3

for comparison is quite nice)

and i think has more features.”

https://github.com/ThePhD/sol2/issues/36

The Backbone of Any Project

 Some projects are the “only alternative” so rather than reinvent

 People muck through it and class APIs

 Join an IRC to understand

 Read the library’s tests to understand

 sol has 20+ competitors, with more NIH Syndrome spawns more bindings

 Bled users everywhere because of no docs

http://sol2.rtfd.io/

http://sol2.rtfd.io/

Thanks and Shilling

 Support me and my family

 Donation Links at the bottom of Docs Front Page and Readme

 Donations have kept me fed for this trip, woo!

 THANK YOU!:

 Donators: Robert Salvet, Ορφέας Ζαφείρης, Michael Waller, Elias Daler and Johannes Schultz

 All of sol2’s users over the years

My Gratitude

 Mark Zeren of VMWare, Simon Brand (@TartanLlama) of Codeplay

 Pushed me to apply as a student Volunteer

 Words of encouragement are powerful things ❤️

 Jason Turner (@lefticus)

 Spoke about sol before I ever had plans for it

 Really encouraged me to speak and finally got to meet him 😄

 I’m going to appear on CppCast! Monday, May 21st, 2018

More Gratitude

 Hipony (Alexandr Timofeev) and kyzo (Alexander Scigajlo) for helping me bikeshed the

logo in the Cpplang Slack!

 #include

 for showing me that even if there might not be people like me in many of the places I am going

and want to go, that they will accept me as a regular human being all the same

 Lounge<C++>

 For always dragging me back in and being all around amazing nerds with great senses of humor

Questions? Comments?

 E-mail: phdofthehouse@gmail.com

 Twitter: @thephantomderp

 Linkedin: https://www.linkedin.com/in/thephd/

 Repository: https://github.com/ThePhD/sol2

	Slide 1: Compile Fast Run Faster Scale Forever
	Slide 2: Why “ThePhD”?
	Slide 3: Lua
	Slide 4: sol2
	Slide 5: Established
	Slide 6: The Interface
	Slide 7: Language Parity
	Slide 8: What would C++ look like…?
	Slide 9: “Pinching Point”
	Slide 10: Stacks!
	Slide 11: Good to use for simple things…
	Slide 12: (╯°□°）╯︵┻━┻ !!
	Slide 13: sol::stack
	Slide 14: Fixed interop points
	Slide 15: Scalability requires Defaults
	Slide 16: Some Types are Special
	Slide 17: What we are doing
	Slide 18: sol::reference
	Slide 19: Rule of 0 for Lua Binding
	Slide 20: Formula for Success
	Slide 21: 4 – Profit
	Slide 22: Magical Abstractions
	Slide 23: Tables and []
	Slide 24: operator[]
	Slide 25: proxy(_base) and friends
	Slide 26: What was all that SFINAE, exactly?
	Slide 27: Scaling up - 🦄 Proxy
	Slide 28: Oh no! 🗡️ 🦄
	Slide 29: Left Hand Side is Queen
	Slide 30: Soon™ Paper: Extended Conversions
	Slide 31: function_result
	Slide 32: Usertypes
	Slide 33: Overloading
	Slide 34: Overloading
	Slide 35: Simulate
	Slide 36: Simulate
	Slide 37: Simulate
	Slide 38: Simulate
	Slide 39: Simulate
	Slide 40: Simulate
	Slide 41: Safety is Optional
	Slide 42: Queries can be made safe…
	Slide 43: By slapping optional on it / checking
	Slide 44: std::optional does NOT cut it
	Slide 45: Soon™ Paper: std::optional<T&>
	Slide 46: std::promise<sol>
	Slide 47: Sol3: why?
	Slide 48: Compile Times MATTER
	Slide 49: if constexpr
	Slide 50: Bloatymcbloatface
	Slide 51: But the goal was runtime speed, right…?
	Slide 52: The Last and Most Important Thing
	Slide 53: DOCUMENTATION!!!
	Slide 54: The Backbone of Any Project
	Slide 55: http://sol2.rtfd.io/
	Slide 56: Thanks and Shilling
	Slide 57: My Gratitude
	Slide 58: More Gratitude
	Slide 59: Questions? Comments?

